Additional information
type of fractal | Rudy |
---|---|
formula | \[z_{n+1}=z_n^p+c\cdot{z}\] |
center x | 0.011622277912170270175451491923013236373662948608398 |
center y | 0.0023981885011515671757287293530680472031235694885254 |
Re(p) | 16 |
Im(p) | 0 |
Re(c) | 1.1622299366058188585526522729196585714817047119141 |
Im(c) | 0.0013451370452164461942456963328140773228369653224945 |
section size | 0.0001482140675139111563735072607528309163171797990799 |
color style | weighted-coloring |
smoothing function | spline |
core color | 0x0 |
puzzle piece? | true |
colormap | 004 |
post-processed | false |
siblings | 1 |
#5F20A4 : 22.16%
#CA14CF : 16.55%
#663162 : 10.72%
#C91A9D : 10.51%
#9B471E : 10.29%
Rarity
type of fractal | Rudy | 7.43% |
Re(p) | 16 | 1.04% |
color style | weighted-coloring | 34.54% |
smoothing function | spline | 10.93% |
core color | 0x0 | 99.53% |
puzzlepiece | true | 1.83% |
colormap | 004 | |
post-processed | false | 70.26% |
siblings | 0237, 0319, 0384, 0428, 0662, 3235, 4241, 4668, 5068, 7101, 7955, 8706, 8726, 9639, 9647, 9670, 3960 | |
puzzle pieces | 0237, 0319, 0384, 0428, 0662, 3235, 4241, 4668, 5068, 7101, 7955, 8706, 8726, 9639, 9647, 9670 |