Additional information
type of fractal | Juliaburningship |
---|---|
formula | \[z_{n+1}=\left(\mid\operatorname{Re}(z_n)\mid+\operatorname{i}\mid\operatorname{Im}(z_n)\mid\right)^p+c\] |
center x | -0.0012540175671278534254293735017427025013603270053864 |
center y | -1.1900673292315528950524594620219431817531585693359 |
Re(p) | 4 |
Im(p) | 4 |
Re(c) | 1.2924346443674781248489580320892855525016784667969 |
Im(c) | 0.15317743933244185039477258669649017974734306335449 |
section size | 0.18728096536040753083973697812325553968548774719238 |
color style | iterative-coloring |
iterative smoothing | steady |
core color | 0x0 |
puzzle masterpiece? | true |
colormap | 036 |
post-processed | false |
siblings | 1 |
#61712A : 16.94%
#5CA564 : 16.18%
#9BCF5E : 13.27%
#13732A : 11.45%
#A96E2E : 10.91%
Rarity
type of fractal | Juliaburningship | 20.07% |
Re(p) | 4 | 9% |
color style | iterative-coloring | 65.46% |
iterative smoothing | steady | 0.87% |
core color | 0x0 | 99.53% |
masterpiece | true | 0.2% |
colormap | 036 | |
post-processed | false | 70.26% |
siblings | 0054, 0200, 0838, 2377, 2437, 3097, 7704, 8780, 9799, 9311 | |
puzzle pieces | 0054, 0200, 0838, 2377, 2437, 3097, 7704, 8780, 9799 |