Additional information
type of fractal | Rudy |
---|---|
formula | \[z_{n+1}=z_n^p+c\cdot{z}\] |
center x | 0.034377228409833038291765205940464511513710021972656 |
center y | -0.04585903961792059391200382378883659839630126953125 |
Re(p) | 12 |
Im(p) | 0 |
Re(c) | 1.1654361049554695650698477038531564176082611083984 |
Im(c) | 0.016447302310446543921473860905280162114650011062622 |
section size | 0.018617074678348347060996559321210952475666999816895 |
color style | weighted-coloring |
smoothing function | linear |
core color | 0x0 |
colormap | 127 |
post-processed | false |
siblings | 43 |
#5E6019 : 20.08%
#69465C : 15.29%
#366B1B : 15.04%
#41203D : 13.68%
#4D9304 : 12.96%
Rarity
type of fractal | Rudy | 7.43% |
Re(p) | 12 | 5.03% |
color style | weighted-coloring | 34.54% |
smoothing function | linear | 20.81% |
core color | 0x0 | 99.53% |
colormap | 127 | |
post-processed | false | 70.26% |
siblings | 0253, 0307, 0468, 0738, 1379, 1620, 1801, 1818, 2246, 2352, 2685, 2739, 2959, 3247, 3276, 3404, 3556, 3613, 4373, 4806, 4807, 4956, 5247, 5345, 5870, 6173, 6191, 6232, 6240, 6528, 6963, 7091, 7274, 7473, 7475, 8124, 8840, 8861, 8900, 9029, 9153, 9718, 9904 |